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Developed result of following paper to dimension 3.

THE CONLEY-ZEHNDER INDICES OF THE ROTATING KEPLER
PROBLEM

PETER ALBERS, JOEL W. FISH, URS FRAUENFELDER, AND OTTO VAN KOERT

ABSTRACT. We determine the Conley-Zehnder indices of all periodic orbits of the rotating
Kepler problem for energies below the critical Jacobi energy. Consequently, we show the
universal cover of the bounded component of the regularized energy hypersurface is dynam-
ically convex. Moreover, in the universal cover there is always precisely one periodic orbit
with Conley-Zehnder index 3, namely the lift of the doubly covered retrograde circular orbit.

1. INTRODUCTION

The Kepler problem in rotating coordinates arises as the limit of the planar circular restricted
3-body problem when the mass of one of the primaries goes to zero, and hence serves as an
approximation of the restricted planar 3-body problem for a small mass parameter. The
ultimate goal is to study the dynamics of the 3-body problem using finite energy foliations.
One essential ingredient is the so-called Conley-Zehnder index of a periodic orbit. These
indices play a central role in the theory of finite energy foliations, symplectic field theory,
Fukaya A..-categories, and various Floer theories.

Based on the joint work with Beomjun Sohn and Sunghae Cho.
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Main Result

@ Describing the moduli space of spatial Kepler orbit.

@ Computation of the Conley-Zehnder index of periodic orbits of
rotating Kepler problem.
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Three Laws of Kepler

Hamiltonian : Kepler energy E : T*(R3\ {0}) - R

1 1
E(q,p) = 5Ipf —
2 g
FE describes the motion of an object under the gravitational force
of a mass at the origin.

© The solutions are conic sections with one focus at the origin.
If £ <0, every orbit is an ellipse.

@ The areal velocity S = r29/2 is constant.

© The period 7 of solution satisfies 72 = —72/2E3.
7 only depends on the Kepler energy.
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Kepler Orbit

Figure 1: lllustration of Kepler orbit !

https://snl.no/Keplers_problem
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Invariant - Angular Momentum

E has SO(3)-symmetry = angular momentum is an invariant.
L= (Li,Le,L3)=qxp

Invariance of L < invariance of the areal velocity.

(L = 726 in polar coordinates)

L is orthogonal to the plane which the orbit is contained in.
= L specifies the plane.

Also, L specifies the direction of rotation.

Ex. For planar orbit, L1 = Ls = 0 and L3 can have both signs.

L3 positive / negative = counterclockwise / clockwise on ¢;go-plane
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Invariant - Angular Momentum

Tis perpendicular
to the xy-plane
P}

Yand p are
in the xy-plane

Figure 2: Angular momentum 2

2W. Moebs, S. Ling, J. Sanny “General Physics Using Calculus I”
o



Invariant - Laplace-Runge-Lenz Vector

Laplace-Runge-Lenz vector (LRL vector) is also an invariant.

A= p><L—i

lq|

Direction of A = Direction of major axis

Eccentricity : €2 = A? = 2FL? + 1 = A = 0 if the orbit is circular.

2
AP = |px LI? - 2 X pI)+1

lq|
2
Ip|?|L|? ‘q|yL\2+1 2 ( p* - \I IL?+1=2FL*+1

2
7 (px L,q)+1=|pIL]? -

Corresponding symmetry is called hidden symmetry. (Appendix 1)
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Invariant - Laplace-Runge-Lenz Vector

pxL A
3/ mkr

Figure 3: LRL vector 3

3https://en.wikipedia.org/wiki/Laplace-Runge-Lenz_vector
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Kepler Orbit
On L-q =0, the Kepler orbit is given in the polar coordinate by

_ L
1+ |A]cos( — g)

r (g is determined by the direction of A).

s oo 05 10

-0 O

In particular, E, L and A determine the Kepler orbit.

Spatial Kepler Problem
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Moser Regularization

Recall.
Moser regularization embeds the level set E~1(Fy) of

the Kepler problem into the geodesic flow on T*S? where r = \/—2Ej.
=- Compactification of the energy level set.

The collision orbits (great circles passing the point at infinity) are added.

This is special case of elliptic orbit with e = |A| =1, L = 0.
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Motivation

Motivation : Restricted circular three-body problem
Motion of a massless body under the gravitational force of two objects

with mass ratio p, and assume the motions of two bodies are circular.
Corresponding Hamiltonian is time-dependent.

1 W 1—p
E =Z|pP® — —
e(t) = —p(cost, —sint, 0), m(t) = (1 — p)(cost, —sint, 0)

In rotating frame, the Hamiltonian is autonomous (time-independent).

1 I 1—p
H=-|p*- — + (q1p2 — q2p1)
2 lg— (=) lg—pl

Rotating Kepler problem is a limit case, = 0.

Rotating Kepler Problem 15 /58



Motivation
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Figure 4: Restricted circular three-body problem*

“H. Alrebdi, F.Dubeibe, K,Papadakis, E.Zotos “Equilibrium dynamics of a circular
restricted three-body problem with Kerr-like primaries”
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Rotating Kepler Problem

Rotating Kepler problem : Kepler problem with rotating frame

1, 5, 1
H=E+Ls=lpl —m+(qlp2—q2p1)

We perform Moser regularization on the compact component H~!(c).
The Hill's region has a compact component if ¢ < —3/2. (Appendix 2)

The regularized system is a Finsler geodesic flow on T*S3.
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Periodic Orbits

Three types of periodic orbits.

@ Planar circular orbits, nondegenerate for generic c.
@ Vertical collision orbits, nondegenerate for generic c.

© Degenerate elliptic orbits.
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Planar Circular Orbits

1. Condition of ¢, E to be circular

{E,L3} =0 = FI}' = FIF o FI}3

FltL?’ is a rotation of period 27 along ¢3- and ps-axes.

Planar circular orbit composed with 3 is always periodic.
Circular condition: €2 =2FEL+1=2F(c—E)>+1=0, or

1
—2F

c+ =F+
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Planar Circular Orbits

1. Condition of ¢, E to be circular

Outer direct orbit

Direct orbit

Retrograde Orbit

IS
b
o
°

Figure 5: Graph of 2E(c — E)? + 1 =0 in (c, E)-plane.
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Planar Circular Orbits
2. Retrograde and Direct Orbits

For fixed ¢ < —3/2, there are exactly 3 planar circular orbits.
Retrograde orbit v,: L3 =1/\/—2E, A=0

Rotates counterclockwise.

Direct orbit v_: L3 = —1//-2E, A=0

Rotates clockwise.

The rest one (outer direct orbit) lies on the unbounded component of the
Hill's region, and not of our interest.

Note. The Kepler energy E characterizes v,

i.e. there exists only one retrograde orbit and only one direct orbit with a
given Kepler energy E.
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Vertical Collision Orbits
Vertical collision orbits v.,: L =0, A3 = F1, c=E.
These are not effected by 30L3, since g1 = q2 =p1 =p2 =0.

= Periodic for every energy level c.

\
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Degenerate Elliptic Orbits

To make other orbits periodic, the period must be rational multiple of 2.

We have 7 = 27/(—2E)?/2, which implies that

ok 1 (k\Y?
kr= T _ 9 Eo=—- (2
T (Sappr T AT T Bm 2(1)

For given ¢, only the elliptic orbit with Kepler energy £} ; and angular
momentum L3 = ¢ — E},; can be periodic.

Possible value for L3 (¢2 = 2EL3 +1 > 0):
1 1
=< L3 < ——=—
\/—2Ek71 \/—2Ek71

The equality holds for the planar circular orbits.
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Degenerate Elliptic Orbits

0.0f

-2.0 -15 -1.0 -0.5 0.0 05

Figure 6: F3 9, drawn with 2E(c — E)? +1 = 0.

@ The endpoints are ..
@ Each interior point is degenerate family of elliptic orbits.
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Degenerate Elliptic Orbits
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Figure 7: lllustration of periodic orbits on a plane and space °

Such orbits always appear with S3-family. (will be explained)
Intuition : SO(3)-rotation, possibly 2 rotating directions.

5Thank you for nice picture, Chankyu Joung.
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Parametrization of the Moduli Space

Important relations
Q (L,A)=0.
Q@ 2=A=2FL*+1
@ |[V2EL+ Al =1
Q@ E, L, and A characterizes the Kepler orbit.

Denote t =—2EL — A, y=+v—-2FEL+ A.
The moduli space of the Kepler orbits with Kepler energy F is

Mp ={(z,y) : |2 = [y =1} = 5% x 5

Note. (Space of unit geodesics of S3) = ST*S3/St ~ 52 x 2.
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Properties of Mg

Under parametrization (v/—2EL — A,/—2EL + A) of Mg,
@ Eccentricity = |A| = |z — y|/2
@ Circular orbits = {A =0} = {z =y} ~ 5?
© Collision orbits = {L =0} = {x = —y} ~ S?
© Planar orbits = {L; = Ly = A3 = 0} ~ S? (Appendix 3)
© Retrograde and Direct orbits v+ = {((0,0,+1),(0,0,+1))}
@ Vertical collision orbits 7., = {((0,0,£1),(0,0,F1))}
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L3 as a Morse Function on Mg

Ly = ;\3}% is a Morse function on Mg ~ S? x S? such that

© ~_ is the unique minimum of Morse index 0. (Lz = —1/v/—2FE.)
@ ., are critical points of Morse index 2. (Ls = 0)
@ A is the unique maximum of Morse index 4. (L3 = 1/v/—2E.)

Let c — F = C, where H = c.

H~'(c) contains L3 '(C) ~ S for each Ey; if C # +1/v/—2E, 0.
(handle attachment)

L3'(0) is homeomorphic to the suspension of 72 (not a manifold).

= Degenerate S3-families of orbits are contained in

the set of periodic orbits of H as a component.
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lllustration of Mg
Similarly, A3 = #3572 is a Morse function on M.

The image and fibers of the map (L3, A3) : Mg — R? is

A
VTc 3
1
S'-family
S 3-family
V. T family” >\(4
-1 / Ly
-1
Y-c

Figure 8: Toric-style illustration of Mg.
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Orbits in a Energy Level Set

-10F

/ 2
I\ /7
20l /S /"

e

L L |
-3.0 -25 -2.0 -1.5 -1.0

Kepler Energy E

Total Energy ¢

For energy level ¢ # Ey;, H'(c) (red line) contains

© Retrograde and direct orbits with Kepler energy F = E.
@ Two vertical collision orbits with Kepler energy £ = c.
@ S3-family of elliptic orbits for each E, < Ep, < E_.
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Goal

@ Compute Conley-Zehnder indices of nondegenerate orbits, v+, Ve, -
@ Compare the result with (S'-equivariant) symplectic homology.

© For degenerate orbits, we use Morse-Bott spectral sequence.
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Summary of the Result

Initial Index

Orbits Index Change
(c < —=3/2)
—4 at En_
Retrograde 'yf 4N — 2 Nk
fork=1,...,N—1
+4 at F
Direct ¥ AN +2 Ntk
fork=1,2,...
Vertical Collisions fyé\i 4N No change
Degenerate S3-family 4k — % Appears at Ej

Table 1: Index changes for different orbit types.
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Robbin-Salamon Index

U :[0,7] — Sp(2n): path of symplectic matrices
Crossing: ¢ such that det(¥(¢) —Id) =0
Crossing Form: Q,(v,v) = w(v, ¥(t)v)
Robbin-Salamon index is a half-integer

1., . 1.
prs(¥) = SignQo+ Y | SignQ: + S SignQ,

t: crossing

© [ugs is invariant under homotopy.
Q If W3(t) = W1()Wa(t), prs(¥3) = prs(V1) + prs(Pa).
Note. Possible other conventions, but will be the same.
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Conley-Zehnder Index

~: nondegenerate contractible periodic Reeb orbit of (Y, ker )

Ayt € — [0,7] x R?™: trivialization of &, which can be extended to a
capping disk.

Conley-Zehnder index of v is RS-index of linearized Reeb flow,
() = A(t)dFIf | A(0)™ € Sp(2n)

Note. If Y = H~!(c) is given by a regular level set of contact type,
uoz of the Reeb orbit on Y, a reparametrization of Hamiltonian orbit,
can be computed by linearized Hamiltonian flow restricted to &.

(See Appendix 4)
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(Very Simple) Symplectic Homology
More explanations in Appendix 4.
W : Liouville domain, so 0W =Y is a contact manifold.
SH (W) : two generators for each periodic Reeb orbit of Y.
The degree is given by ucz(v) and pez(y) + 1.
Fact. (Viterbo) SH.(T*M) is isomorphic to H.(LM).
SH is filtered by the periods (= symplectic action) of Reeb orbits.
SH51’+(W) : one generator for each periodic Reeb orbit of Y.
The degree is given by ucz (7).
Zo x =2

SHS'" 1 (T*S3) ~{ 72 +=2k>14
0  otherwise
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(Very Simple) Morse-Bott Spectral Sequence

Case : Reeb orbits are nicely degenerate (Morse-Bott condition),

and the degenerate orbits with the same period form a submanifold .

Theorem

There exists a spectral sequence converging to SH +5! (W) whose
E'-page is given by

1
Er (SHS 1) = Osccw) Hyg-snitmy(E) p>0
Y4 0 » S 0

where shift(X) = prg(X) — 5 dim /S
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Conley-Zehnder Index of Planar Circular Orbits

1. Parametrization of the Orbits

Cylindrical coordinate

(q1,92,q3) = (rcos@,rsinb, z)

(p1,p2,p3) = (prcos — % sin @, p, sin 0 + % cos6,p.)

Hamiltonian vector field

r z
XH prar—i—( + 1) 89+pz8z+( m) 8pr_ (7,2 + Z2)3/2 apz

Imposing r = g (circular) and z = p, = 0 (planar).
= p, =0 and r = p, so for wy = +,/rg = £1/V/—2F,

1
X = 0
H (w3+1) ’
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Conley-Zehnder Index of Planar Circular Orbits

1. Parametrization of the Orbits

Planar circular orbits are given by

r(t) Wy
6(t) (w—lg + 1) t
x| _ | o
Dr (t) 0
po(t) wo
Dz (t) 0

Periods are given by

" 27 _ 2T
LJwi+1  (—2E)3/2+1°

T =
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Conley-Zehnder Index of Planar Circular Orbits

2. Linearized Flow

Linearized Hamiltonian flow (differentiate X )

o 0 0 1 0 0

—2/wd 0 0 0 1l/wi 0

L_ o 0 0 0 0 1
Tl -1/wS 0 0 0 2/wi 0
o 0 0 0 0 0

0 0 —-1/w§ 0 0 0
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Conley-Zehnder Index of Planar Circular Orbits

2. Linearized Flow

Symplectic frame of & = ker(dH ) N ker(—qdp)

1
X1=0p+ _6pw X5 = w0
wo

X3 zapza X4:az

Under this basis, we have

0 -1l/wy 0 0

L_ w3 0 0 0
I () 0 0 —1/wf

0 0 1 0
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Conley-Zehnder Index of Planar Circular Orbits

3. Crossing Forms
By integration,

t 1

cos w—gt — sntl o 0 0
wo sin 5 Ccos —5 0 0
)\ H (t) = “o “o t 1 t
0 0 COS 3 — 3 S1n 3
0 0 0
0 0 wi sin & cos L
Wo wWo

Crossings occurs at 2winZ and crossing form is

1Jwg 0 0 0
: e | 0 1/wg 0 0
Qp(t)=QL=| | 0l 1 0
0 0 0 1/w§

which has signature 4. (2 is the matrix represents the symplectic form.)
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Conley-Zehnder Index of Planar Circular Orbits

4. The Formula

Theorem

Let v+ be the retrograde and direct orbits of Kepler energy E where
E # Ey; for any k,1. Then v+ and their multiple covers are
non-degenerate. The Conley-Zehnder index of N-th iterate of 4 is

poz(vd) =2 +4max{n € Zsg : 2nwin < NTi}

—9F)3/2
=2+4max{n€Z>0:n<N¥}

(—2E)3/2+1
B (—2E)3/2
T

Note. This is twice the index of circular orbits of the planar problem.
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Conley-Zehnder Index of Planar Circular Orbits
5. Description by Kepler Energy F

3.0+

25F

201

Kepler Energy E

(—2E)3/2

Figure 9: Graph of uy = (ETHEEESE

The index of fyiv decreases by 4, while vV increases by 4,
whenever pi+ touches k/N < E = En_jj, of E = Enypp.
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Conley-Zehnder Index of Planar Circular Orbits
5. Description by Kepler Energy F

Theorem

The index of v with Kepler energy E is given as following.

4N — 2 ifE<En_171,
N IFEN_kk < E < EN_p—1k4+1
poz(vp) =4 AN -k =2 19, N-2
2 if B > E17N_1,
AN + 2 ifE < Eni11,
pez(vY) = AN + ) +2 if ENtige < E < ENtit1,e41

fork=1,2,....
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Conley-Zehnder Index of Vertical Collision Orbits

1. Decomposition of the Index

e : Vertical collision orbits

Kp : Regularized (non-rotating) Kepler Hamiltonian
W, : Linearized Hamiltonian flow of Kg.

Vr,, : Linearized Hamiltonian flow of Ls.

Lemma
pez(Ve) = wrs(Yig) + wrs(YLy)- J

O {E,L3} =0. = dFIY =dFI¥ o dFI"3. = Uy (t) = Up(t)V,(t).
@ Kp-flow is parallel to E-flow. = purs(¥k,) = prs(VE).

© Ls-flow is constant along 7., , so the trivialization doesn't matter.
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Conley-Zehnder Index of Vertical Collision Orbits

2. Linearized Flow of Kg

Parametrization of vertical collision orbits .,
Yey = (—cos(rt),0,0,Fsin(rt); sin(rt)/r, 0,0, F cos(rt)/r)
Symplectic frame along 7.,
(X1, X2, X3, X4) = (0y,, Oy, Oyy, Oz,)

Hamiltonian equation of Kg

0 Y f(=y2(1 = 20) — 21(r + (212 — 2291)))
i _ Py =yl friza(1 — xo)
() Y2 flayi (1 — 20) — 2(r + (@1y2 — 22y1)))
Iy Py + [yl frime(1 — x0)

where f(z,y) =7+ (1 — z0)(z1y2 — T201)
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Conley-Zehnder Index of Vertical Collision Orbits
2. Linearized Flow of Kg

Imposing 1 = z2 = y1 = y2 = 0 (vertical),

linearized Hamiltonian flow is

0 -1 0 0
2 0 0 0
L= 0 0 0 -1
0 0 r2 0

By integration, we get

cos(rt)  sin(rt)/r 0 0
| —rsin(rt)  cos(rt) 0 0
Vi (t) = 0 0 cos(rt)  sin(rt)/r
0 0 —rsin(rt)  cos(rt)

= A crossing at each endpoint of 7., .
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Conley-Zehnder Index of Vertical Collision Orbits
3. Crossing Form of Kg

Crossing form has signature 4,

2

Q\PKE(T) =

cor o
o J,o o
—_ o oo

r
0
0
0

= One iteration increases the index by 4.

= pcz(yN) = 4N for the collision orbit of (non-rotating) Kepler problem.
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Conley-Zehnder Index of Vertical Collision Orbits
4. Index of U,

Linearized Lz-flow in the given basis is

0

[es}
o O O

0
1
0
0

o O O

0 -1

Crossings are at 277, and the crossing form is

00 0 1
, 0 0 -1 0
Qi(ry=aM=|, "

1 0 0 0

The signature is 0.

Note. F'I3 rotates Lagrangian subspaces, q1go-plane and pipo-plane.
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Conley-Zehnder Index of Vertical Collision Orbits
5. The Formula

Theorem

Let ~y., be the vertical collision orbits of Kepler energy E where E # E}.;

for any k,l. Then 7., and their multiple covers are non-degenerate. The
Conley-Zehnder index of N-th iteration of ., is

ez (7)) = prs(Yky) + prs(¥r,) = AN + 0 = 4N.
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Interpretation by Symplectic Homology

Zo * = 2,
SHS'(T*S3%) ~{ 72 =2k >4,
0  otherwise.
For fixed N, there exists ¢ < —3/2 such that H~!(c) consists of
@ k(< N)-th covers of retrograde orbit of index 4k — 2
@ k(< N)-th covers of direct orbit of index 4k + 2
@ k(< N)-th covers of vertical collision orbits of index 4k
© Higher covers have degree > 4N + 2.
= Up to degree 4N + 2, we have
© One generator at degree 2. (7v4.)
@ Two generators at degree 6, 10, 14, ---, 4N + 2. (fy_]fr1 and vﬁ)
© Two generators at degree 4, 8, 12, ---, 4N. (fy(’f+ and v* )

1
= Describes SH;* (T*S3) up to degree 4N + 2 completely.
53 /58



Conley-Zehnder Index of Degenerate Orbits

As we increase the Kepler energy level E from L} ; — ¢ to Ej; + ¢,

© Retrograde: ucz(fy_]frl) decreases from 4k + 2 to 4k — 2.

@ Direct: 1icz(7"7!) increases from 4k — 2 to 4k + 2.
O Elliptic Orbits: At E = Ej;, S3-family of orbits emerges.

Claim. Index of S3-family of orbits with Kepler energy Ei,is

pez(X) = shift(X) + dim S3/2
= (4k —2) +3/2 = 4k — 1/2
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Conley-Zehnder Index of Degenerate Orbits

e 2
ez =18

By

e

Figure 10: Index change of triple cover of direct orbit through Fy
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Morse-Bott Spectral Sequence

(Local) Morse-Bott spectral sequence of SHS'++

18 18 /
17 17

16 16

15 15

14 . 14 .
] 1 ] 1 2

Left: H = c¢_, triple cover of direct orbit with index 14.
Right: H = c, triple cover of direct orbit with index 18,
= S3-family must have shift 14, so pcz(3) = 14 +3/2 = 15.5.
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Further Discussions

@ Showing that the S3-family of orbits is Morse-Bott.

@ Using the result to three-body problem,
regarded as a perturbation of Kepler problem.

© Existence of the closed spatial orbit of three-body problem.
(We have numerical results.)
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