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Developed result of following paper to dimension 3.

Based on the joint work with Beomjun Sohn and Sunghae Cho.
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Main Result

1 Describing the moduli space of spatial Kepler orbit.

2 Computation of the Conley-Zehnder index of periodic orbits of
rotating Kepler problem.
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Three Laws of Kepler

Hamiltonian : Kepler energy E : T ∗(R3 \ {0}) → R

E(q, p) =
1

2
|p|2 − 1

|q|

E describes the motion of an object under the gravitational force

of a mass at the origin.

1 The solutions are conic sections with one focus at the origin.
If E < 0, every orbit is an ellipse.

2 The areal velocity Ṡ = r2θ̇/2 is constant.

3 The period τ of solution satisfies τ2 = −π2/2E3.
τ only depends on the Kepler energy.
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Kepler Orbit

Figure 1: Illustration of Kepler orbit 1

1https://snl.no/Keplers problem
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Invariant - Angular Momentum

E has SO(3)-symmetry ⇒ angular momentum is an invariant.

L = (L1, L2, L3) = q × p

Invariance of L ⇔ invariance of the areal velocity.

(L = r2θ̇ in polar coordinates)

L is orthogonal to the plane which the orbit is contained in.

⇒ L specifies the plane.

Also, L specifies the direction of rotation.

Ex. For planar orbit, L1 = L2 = 0 and L3 can have both signs.

L3 positive / negative ⇒ counterclockwise / clockwise on q1q2-plane
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Invariant - Angular Momentum

Figure 2: Angular momentum 2

2W. Moebs, S. Ling, J. Sanny “General Physics Using Calculus I”
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Invariant - Laplace-Runge-Lenz Vector

Laplace-Runge-Lenz vector (LRL vector) is also an invariant.

A = p× L− q

|q|

Direction of A = Direction of major axis

Eccentricity : ε2 = A2 = 2EL2 + 1 ⇒ A = 0 if the orbit is circular.

|A|2 = |p× L|2 − 2

|q|
⟨p× L, q⟩+ 1 = |p|2|L|2 − 2

|q|
⟨q × p, L⟩+ 1

= |p|2|L|2 − 2

|q|
|L|2 + 1 = 2

(
|p|2 − 1

|q|

)
|L|2 + 1 = 2EL2 + 1.

Corresponding symmetry is called hidden symmetry. (Appendix 1)
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Invariant - Laplace-Runge-Lenz Vector

Figure 3: LRL vector 3

3https://en.wikipedia.org/wiki/Laplace-Runge-Lenz vector
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Kepler Orbit

On L · q = 0, the Kepler orbit is given in the polar coordinate by

r =
|L|2

1 + |A| cos(θ − g)
(g is determined by the direction of A).

In particular, E, L and A determine the Kepler orbit.
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Moser Regularization

Recall.

Moser regularization embeds the level set E−1(E0) of

the Kepler problem into the geodesic flow on T ∗S3
r where r =

√
−2E0.

⇒ Compactification of the energy level set.

The collision orbits (great circles passing the point at infinity) are added.

This is special case of elliptic orbit with ε = |A| = 1, L = 0.
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Rotating Kepler Problem
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Motivation

Motivation : Restricted circular three-body problem

Motion of a massless body under the gravitational force of two objects

with mass ratio µ, and assume the motions of two bodies are circular.

Corresponding Hamiltonian is time-dependent.

Et(q, p) =
1

2
|p|2 − µ

|q −m(t)|
− 1− µ

|q − e(t)|
,

e(t) = −µ(cos t,− sin t, 0), m(t) = (1− µ)(cos t,− sin t, 0)

In rotating frame, the Hamiltonian is autonomous (time-independent).

H =
1

2
|p|2 − µ

|q − (1− µ)|
− 1− µ

|q − µ|
+ (q1p2 − q2p1)

Rotating Kepler problem is a limit case, µ = 0.
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Motivation

Figure 4: Restricted circular three-body problem4

4H. Alrebdi, F.Dubeibe, K,Papadakis, E.Zotos “Equilibrium dynamics of a circular
restricted three-body problem with Kerr-like primaries”
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Rotating Kepler Problem

Rotating Kepler problem : Kepler problem with rotating frame

H = E + L3 =
1

2
|p|2 − 1

|q|
+ (q1p2 − q2p1)

We perform Moser regularization on the compact component H−1(c).

The Hill’s region has a compact component if c < −3/2. (Appendix 2)

The regularized system is a Finsler geodesic flow on T ∗S3.
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Periodic Orbits

Three types of periodic orbits.

1 Planar circular orbits, nondegenerate for generic c.

2 Vertical collision orbits, nondegenerate for generic c.

3 Degenerate elliptic orbits.
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Planar Circular Orbits
1. Condition of c, E to be circular

{E,L3} = 0 ⇒ FlHt = FlEt ◦ FlL3
t

FlL3
t is a rotation of period 2π along q3- and p3-axes.

Planar circular orbit composed with φL3 is always periodic.

Circular condition: ε2 = 2EL2
3 + 1 = 2E(c− E)2 + 1 = 0, or

c± = E ± 1√
−2E

Rotating Kepler Problem 19 / 58



Planar Circular Orbits
1. Condition of c, E to be circular

Figure 5: Graph of 2E(c− E)2 + 1 = 0 in (c, E)-plane.
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Planar Circular Orbits
2. Retrograde and Direct Orbits

For fixed c < −3/2, there are exactly 3 planar circular orbits.

Retrograde orbit γ+: L3 = 1/
√
−2E, A = 0

Rotates counterclockwise.

Direct orbit γ−: L3 = −1/
√
−2E, A = 0

Rotates clockwise.

The rest one (outer direct orbit) lies on the unbounded component of the
Hill’s region, and not of our interest.

Note. The Kepler energy E characterizes γ±,

i.e. there exists only one retrograde orbit and only one direct orbit with a
given Kepler energy E.
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Vertical Collision Orbits

Vertical collision orbits γc± : L = 0, A3 = ∓1, c = E.

These are not effected by φL3 , since q1 = q2 = p1 = p2 = 0.

⇒ Periodic for every energy level c.
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Degenerate Elliptic Orbits

To make other orbits periodic, the period must be rational multiple of 2π.

We have τ = 2π/(−2E)3/2, which implies that

kτ =
2kπ

(−2E)3/2
= 2lπ ⇒ Ek,l = −1

2

(
k

l

)2/3

For given c, only the elliptic orbit with Kepler energy Ek,l and angular
momentum L3 = c− Ek,l can be periodic.

Possible value for L3 (ε2 = 2EL2
3 + 1 ≥ 0):

− 1√
−2Ek,l

≤ L3 ≤
1√

−2Ek,l

The equality holds for the planar circular orbits.
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Degenerate Elliptic Orbits

Figure 6: E3,2, drawn with 2E(c− E)2 + 1 = 0.

1 The endpoints are γ±.

2 Each interior point is degenerate family of elliptic orbits.
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Degenerate Elliptic Orbits

Figure 7: Illustration of periodic orbits on a plane and space 5

Such orbits always appear with S3-family. (will be explained)

Intuition : SO(3)-rotation, possibly 2 rotating directions.

5Thank you for nice picture, Chankyu Joung.
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Moduli Space of Kepler Orbits
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Parametrization of the Moduli Space

Important relations

1 ⟨L,A⟩ = 0.

2 ε2 = A2 = 2EL2 + 1

3 ||
√
−2EL±A||2 = 1

4 E, L, and A characterizes the Kepler orbit.

Denote x =
√
−2EL−A, y =

√
−2EL+A.

The moduli space of the Kepler orbits with Kepler energy E is

ME =
{
(x, y) : |x|2 = |y|2 = 1

}
≃ S2 × S2

Note. (Space of unit geodesics of S3) = ST ∗S3/S1 ≃ S2 × S2.
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Properties of ME

Under parametrization (
√
−2EL−A,

√
−2EL+A) of ME ,

1 Eccentricity = |A| = |x− y|/2
2 Circular orbits = {A = 0} = {x = y} ≃ S2

3 Collision orbits = {L = 0} = {x = −y} ≃ S2

4 Planar orbits = {L1 = L2 = A3 = 0} ≃ S2 (Appendix 3)

5 Retrograde and Direct orbits γ± = {((0, 0,±1), (0, 0,±1))}
6 Vertical collision orbits γc± = {((0, 0,±1), (0, 0,∓1))}
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L3 as a Morse Function on ME

L3 =
x3+y3
2
√
−2E

is a Morse function on ME ≃ S2 × S2 such that

1 γ− is the unique minimum of Morse index 0. (L3 = −1/
√
−2E.)

2 γc± are critical points of Morse index 2. (L3 = 0)

3 γ+ is the unique maximum of Morse index 4. (L3 = 1/
√
−2E.)

Let c− E = C, where H = c.

H−1(c) contains L−1
3 (C) ≃ S3 for each Ek,l if C ̸= ±1/

√
−2E, 0.

(handle attachment)

L−1
3 (0) is homeomorphic to the suspension of T 2 (not a manifold).

⇒ Degenerate S3-families of orbits are contained in

the set of periodic orbits of H as a component.
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Illustration of ME

Similarly, A3 =
y3−x3

2 is a Morse function on ME .

The image and fibers of the map (L3, A3) : ME → R2 is

Figure 8: Toric-style illustration of ME .
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Orbits in a Energy Level Set

For energy level c ̸= Ek,l, H
−1(c) (red line) contains

1 Retrograde and direct orbits with Kepler energy E = E±.
2 Two vertical collision orbits with Kepler energy E = c.
3 S3-family of elliptic orbits for each E+ < Ek,l < E−.
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Conley-Zehnder Index of Kepler Orbits
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Goal

1 Compute Conley-Zehnder indices of nondegenerate orbits, γ±, γc± .

2 Compare the result with (S1-equivariant) symplectic homology.

3 For degenerate orbits, we use Morse-Bott spectral sequence.
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Summary of the Result

Orbits
Initial Index

(c ≪ −3/2)
Index Change

Retrograde γN+ 4N − 2
−4 at EN−k,k

for k = 1, . . . , N − 1

Direct γN− 4N + 2
+4 at EN+k,k

for k = 1, 2, . . .

Vertical Collisions γNc± 4N No change

Degenerate S3-family 4k − 1
2 Appears at Ek,l

Table 1: Index changes for different orbit types.
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Robbin-Salamon Index

Ψ : [0, τ ] → Sp(2n): path of symplectic matrices

Crossing: t such that det(Ψ(t)− Id) = 0

Crossing Form: Qt(v, v) = ω(v, Ψ̇(t)v)

Robbin-Salamon index is a half-integer

µRS(Ψ) =
1

2
SignQ0 +

∑
t : crossing

SignQt +
1

2
SignQτ

1 µRS is invariant under homotopy.

2 If Ψ3(t) = Ψ1(t)Ψ2(t), µRS(Ψ3) = µRS(Ψ1) + µRS(Ψ2).

Note. Possible other conventions, but will be the same.
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Conley-Zehnder Index

γ: nondegenerate contractible periodic Reeb orbit of (Y, kerα)

A : γ∗ξ → [0, τ ]× R2n: trivialization of ξ, which can be extended to a
capping disk.

Conley-Zehnder index of γ is RS-index of linearized Reeb flow,

Ψ(t) = A(t)dF lRt |ξA(0)−1 ∈ Sp(2n)

Note. If Y = H−1(c) is given by a regular level set of contact type,

µCZ of the Reeb orbit on Y , a reparametrization of Hamiltonian orbit,

can be computed by linearized Hamiltonian flow restricted to ξ.

(See Appendix 4)
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(Very Simple) Symplectic Homology
More explanations in Appendix 4.

W : Liouville domain, so ∂W = Y is a contact manifold.

SH+
∗ (W ) : two generators for each periodic Reeb orbit of Y .

The degree is given by µCZ(γ) and µCZ(γ) + 1.

Fact. (Viterbo) SH∗(T
∗M) is isomorphic to H∗(LM).

SH+
∗ is filtered by the periods (= symplectic action) of Reeb orbits.

SHS1,+
∗ (W ) : one generator for each periodic Reeb orbit of Y .

The degree is given by µCZ(γ).

SHS1,+
∗ (T ∗S3) ≃


Z2 ∗ = 2
Z2
2 ∗ = 2k ≥ 4
0 otherwise
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(Very Simple) Morse-Bott Spectral Sequence

Case : Reeb orbits are nicely degenerate (Morse-Bott condition),

and the degenerate orbits with the same period form a submanifold Σ.

Theorem

There exists a spectral sequence converging to SH+,S1
(W ) whose

E1-page is given by

E1
pq(SH

S1,+) =

{ ⊕
Σ∈C(p)H

S1

p+q−shift(Σ)(Σ) p > 0

0 p ≤ 0

where shift(Σ) = µRS(Σ)− 1
2 dimΣ/S1.
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Conley-Zehnder Index of Planar Circular Orbits
1. Parametrization of the Orbits

Cylindrical coordinate

(q1, q2, q3) = (r cos θ, r sin θ, z)

(p1, p2, p3) = (pr cos θ −
pθ
r
sin θ, pr sin θ +

pθ
r
cos θ, pz)

Hamiltonian vector field

XH = pr∂r+
(pθ
r2

+ 1
)
∂θ+pz∂z+

(
p2θ
r3

− r

(r2 + z2)3/2

)
∂pr−

z

(r2 + z2)3/2
∂pz

Imposing r = r0 (circular) and z = pz = 0 (planar).

⇒ pr = 0 and r = p2θ, so for ω0 = ±√
r0 = ±1/

√
−2E,

XH =

(
1

ω3
0 + 1

)
∂θ
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Conley-Zehnder Index of Planar Circular Orbits
1. Parametrization of the Orbits

Planar circular orbits are given by

r(t)
θ(t)
z(t)
pr(t)
pθ(t)
pz(t)

 =



ω2
0(

1
ω3
0
+ 1

)
t

0
0
ω0

0


Periods are given by

τ± = ± 2π

1/ω3
0 + 1

=
2π

(−2E)3/2 ± 1
.
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Conley-Zehnder Index of Planar Circular Orbits
2. Linearized Flow

Linearized Hamiltonian flow (differentiate XH)

L =



0 0 0 1 0 0
−2/ω5

0 0 0 0 1/ω4
0 0

0 0 0 0 0 1
−1/ω6

0 0 0 0 2/ω3
0 0

0 0 0 0 0 0
0 0 −1/ω6

0 0 0 0


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Conley-Zehnder Index of Planar Circular Orbits
2. Linearized Flow

Symplectic frame of ξ = ker(dH) ∩ ker(−qdp)

X1 = ∂θ +
1

ω0
∂pr , X2 = ω0∂r

X3 = ∂pz , X4 = ∂z

Under this basis, we have

L =


0 −1/ω4

0 0 0
1/ω2

0 0 0 0
0 0 0 −1/ω6

0

0 0 1 0


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Conley-Zehnder Index of Planar Circular Orbits
3. Crossing Forms

By integration,

ΨH(t) =


cos t

ω3
0

− 1
ω0

sin t
ω3
0

0 0

ω0 sin
t
ω3
0

cos t
ω3
0

0 0

0 0 cos t
ω3
0

− 1
ω3
0
sin t

ω3
0

0 0 ω3
0 sin

t
ω3
0

cos t
ω3
0


Crossings occurs at 2ω3

0πZ and crossing form is

ΩΨ̇H(t) = ΩL =


1/ω2

0 0 0 0
0 1/ω4

0 0 0
0 0 1 0
0 0 0 1/ω6

0


which has signature 4. (Ω is the matrix represents the symplectic form.)
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Conley-Zehnder Index of Planar Circular Orbits
4. The Formula

Theorem

Let γ± be the retrograde and direct orbits of Kepler energy E where
E ̸= Ek,l for any k, l. Then γ± and their multiple covers are
non-degenerate. The Conley-Zehnder index of N -th iterate of γ± is

µCZ(γ
N
± ) = 2 + 4max

{
n ∈ Z>0 : 2πω

3
0n < Nτ±

}
= 2 + 4max

{
n ∈ Z>0 : n < N

(−2E)3/2

(−2E)3/2 ± 1

}

= 2 + 4

⌊
N

(−2E)3/2

(−2E)3/2 ± 1

⌋

Note. This is twice the index of circular orbits of the planar problem.
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Conley-Zehnder Index of Planar Circular Orbits
5. Description by Kepler Energy E

Figure 9: Graph of µ± = (−2E)3/2

(−2E)3/2±1
.

The index of γN+ decreases by 4, while γN− increases by 4,

whenever µ± touches k/N ⇔ E = EN−k,k or E = EN+k,k.
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Conley-Zehnder Index of Planar Circular Orbits
5. Description by Kepler Energy E

Theorem

The index of γN± with Kepler energy E is given as following.

µCZ(γ
N
+ ) =


4N − 2 if E < EN−1,1,

4(N − k)− 2
if EN−k,k < E < EN−k−1,k+1

for k = 1, 2, . . . , N − 2,
2 if E > E1,N−1,

µCZ(γ
N
− ) =


4N + 2 if E < EN+1,1,

4(N + k) + 2
if EN+k,k < E < EN+k+1,k+1

for k = 1, 2, . . . .
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Conley-Zehnder Index of Vertical Collision Orbits
1. Decomposition of the Index

γc : Vertical collision orbits

KE : Regularized (non-rotating) Kepler Hamiltonian

ΨKE
: Linearized Hamiltonian flow of KE .

ΨL3 : Linearized Hamiltonian flow of L3.

Lemma

µCZ(γc) = µRS(ΨKE
) + µRS(ΨL3).

1 {E,L3} = 0. ⇒ dF lH = dF lE ◦ dF lL3 . ⇒ ΨH(t) = ΨE(t)ΨL3(t).

2 KE-flow is parallel to E-flow. ⇒ µRS(ΨKE
) = µRS(ΨE).

3 L3-flow is constant along γc± , so the trivialization doesn’t matter.
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Conley-Zehnder Index of Vertical Collision Orbits
2. Linearized Flow of KE

Parametrization of vertical collision orbits γc±

γc± = (− cos(rt), 0, 0,∓ sin(rt) ; sin(rt)/r, 0, 0,∓ cos(rt)/r)

Symplectic frame along γc±

(X1, X2, X3, X4) = (∂y1 , ∂x1 , ∂y2 , ∂x2)

Hamiltonian equation of KE
ẏ1
ẋ1
ẏ2
ẋ2

 =


|y|2f(−y2(1− x0)− x1(r + (x1y2 − x2y1)))

f2y1 − |y|2fx1x2(1− x0)
|y|2f(ay1(1− x0)− x2(r + (x1y2 − x2y1)))

f2y2 + |y|2fx1x2(1− x0)


where f(x, y) = r + (1− x0)(x1y2 − x2y1)
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Conley-Zehnder Index of Vertical Collision Orbits
2. Linearized Flow of KE

Imposing x1 = x2 = y1 = y2 = 0 (vertical),

linearized Hamiltonian flow is

L =


0 −1 0 0
r2 0 0 0
0 0 0 −1
0 0 r2 0


By integration, we get

ΨKE
(t) =


cos(rt) sin(rt)/r 0 0

−r sin(rt) cos(rt) 0 0
0 0 cos(rt) sin(rt)/r
0 0 −r sin(rt) cos(rt)


⇒ A crossing at each endpoint of γc± .
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Conley-Zehnder Index of Vertical Collision Orbits
3. Crossing Form of KE

Crossing form has signature 4,

ΩΨ̇KE
(τ) =


r2 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 1

 .

⇒ One iteration increases the index by 4.

⇒ µCZ(γ
N ) = 4N for the collision orbit of (non-rotating) Kepler problem.
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Conley-Zehnder Index of Vertical Collision Orbits
4. Index of ΨL3

Linearized L3-flow in the given basis is

M =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .

Crossings are at 2πZ, and the crossing form is

ΩΨ̇L(τ) = ΩM =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .

The signature is 0.

Note. FlL3 rotates Lagrangian subspaces, q1q2-plane and p1p2-plane.
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Conley-Zehnder Index of Vertical Collision Orbits
5. The Formula

Theorem

Let γc± be the vertical collision orbits of Kepler energy E where E ̸= Ek,l

for any k, l. Then γc± and their multiple covers are non-degenerate. The
Conley-Zehnder index of N -th iteration of γc± is

µCZ(γ
N
c±) = µRS(ΨKE

) + µRS(ΨL3) = 4N + 0 = 4N.
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Interpretation by Symplectic Homology

SH+,S1

∗ (T ∗S3) ≃


Z2 ∗ = 2,
Z2
2 ∗ = 2k ≥ 4,
0 otherwise.

For fixed N , there exists c ≪ −3/2 such that H−1(c) consists of

1 k(≤ N)-th covers of retrograde orbit of index 4k − 2

2 k(≤ N)-th covers of direct orbit of index 4k + 2

3 k(≤ N)-th covers of vertical collision orbits of index 4k

4 Higher covers have degree > 4N + 2.

⇒ Up to degree 4N + 2, we have

1 One generator at degree 2. (γ+.)

2 Two generators at degree 6, 10, 14, · · · , 4N + 2. (γk+1
+ and γk−.)

3 Two generators at degree 4, 8, 12, · · · , 4N . (γkc+ and γkc− .)

⇒ Describes SH+,S1

∗ (T ∗S3) up to degree 4N + 2 completely.
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Conley-Zehnder Index of Degenerate Orbits

As we increase the Kepler energy level E from Ek,l − ε to Ek,l + ε,

1 Retrograde: µCZ(γ
k+l
+ ) decreases from 4k + 2 to 4k − 2.

2 Direct: µCZ(γ
k−l
− ) increases from 4k − 2 to 4k + 2.

3 Elliptic Orbits: At E = Ek,l, S
3-family of orbits emerges.

Claim. Index of S3-family of orbits with Kepler energy Ek,l is

µCZ(Σ) = shift(Σ) + dimS3/2

= (4k − 2) + 3/2 = 4k − 1/2

.
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Conley-Zehnder Index of Degenerate Orbits

Figure 10: Index change of triple cover of direct orbit through E4,1
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Morse-Bott Spectral Sequence

(Local) Morse-Bott spectral sequence of SHS1,+

Left: H = c−, triple cover of direct orbit with index 14.

Right: H = c+, triple cover of direct orbit with index 18,

⇒ S3-family must have shift 14, so µCZ(Σ) = 14 + 3/2 = 15.5.
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Closing
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Further Discussions

1 Showing that the S3-family of orbits is Morse-Bott.

2 Using the result to three-body problem,

regarded as a perturbation of Kepler problem.

3 Existence of the closed spatial orbit of three-body problem.

(We have numerical results.)
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